

 Signature Page

RBSP EFW

Data Controller Board (DCB) FPGA Specification & Functional
Description

RBSP_EFW_DCB_001O

Dorothy Gordon, U.C Berkeley RBSP EFW DCB FPGA Engineer

Peter Harvey, U.C Berkeley RBSP EFW FSW

Michael Ludlam, U.C. Berkeley RBSP EFW Systems Engineer

RBSP EFW
Data Controller Board (DCB) FPGA Specification & Functional Description

RBSP_EFW_DCB_001O

23 November 2009
23 November 2009 1 RBSP_EFW_DCB_001O

References.
1. Interface Control Document (ICD) for the EFW Investigation, Applied Physics Laboratory (Dwg No.

7417-9083)
2. THEMIS Data Controller Board Specification and Functional Description (thm-dcb-001, Rev. A.06, 11

October 2004)
3. Zilog Z8400/Z84C00 NMOS/CMOS Z80 Specification
4. CZ80CPU Synthesizable HDL Core Specification (CZ80CPU-DES-1H18N00S00-200), Evatronix SA,

April 26, 2007
5. RBSP_EFW_DCB_003E_Specification: Digital Control Board (DCB) Specification
6. RBSP_EFW_BPL_001M_Specification: IDPU Backplane Specification
7. RBSP EFW PCB Logic, Rev. B, June 23, 2008
8. RBSP_EFW_BEB_SCH_002A, Rev. A
9. Boom Electronics Board (BEB) Specification, RBSP_EFW_BEB_001F
10. AD5544/AD5554 DAC Specification, Analog Devices, 2004, Rev. A
11. NAND FLASH Memory MT29F16G08--- Specification, Rev. B, 2/07
23 November 2009 2 RBSP_EFW_DCB_001O

Table of Contents

1.0 Introduction... 5
2.0 Subsystem Descriptions... 7

2.1 Clocks .. 7
2.2 Reset... 7
2.3 CPU.. 7

2.3.1 Debug Interface... 7
2.3.2 Interrupts ... 9

2.4 CPU Memory ... 9
2.4.1 CPU Memory Map ... 10
2.4.2 CPU I/O Space... 12

2.5 Memory Bus Control/Arbitration.. 23
2.6 Bulk Memory ‐ SDRAM.. 24

2.6.1 SDRAM Error Correction Circuitry (ECC) 24
2.7 FLASH Memory... 26

2.7.1 FLASH Addressing .. 27
2.7.2 FLASH Control ... 27
2.7.3 FLASH ECC... 30
2.7.4 FLASH Interrupt... 30
2.7.5 FLASH Diagnostic Mode .. 31

2.8 Timekeeping... 32
2.8.1 Timebase Counter... 32
2.8.2 S/C Timing Signals (1PPS and Spin Pulse) 32

2.9 Housekeeping Subsystem .. 33
2.10 PCB Interface.. 33
2.11 BEB Interface .. 33

2.11.1 BEB Analog Mux Controls .. 34
2.11.2 BEB AC Test Stimulus.. 34
2.11.3 BEB DAC Controls ... 34

2.12 DFB Interface.. 35
2.12.1 DFB Command Interface... 35
2.12.2 DFB Telemetry Interface .. 35
2.12.3 DFB DMA .. 36

2.13 Spacecraft Interface ... 38
2.13.1 UARTs (CMD and TLM) ... 38
2.13.2 S/C Command DMA Interface ... 39
2.13.3 S/C Telemetry DMA Interface... 39
23 November 2009 3 RBSP_EFW_DCB_001O

Document Revision History

Revision Number Date Change Summary
A 11 February 2008 Initial Draft
B 04 March 2008 Incremental changes
C 24 March 2008 Additional design details
D 18 April 2008 References to data repository removed (changed to FLASH); references

to SSR removed (changed to SDRAM); addition of Baud Rate Selection
for telemetry, protoboard debug hooks (Diagnostic Switch and LEDs);
reduction of telemetry buffer page size to 4Kbytes, reorganization of the
DFB DMA channel; additional design details and corrections.

E 10 June 2008 Added debug UART details, minor corrections
Changed document name (added FPGA to title)
Added Latchup Protection Description
Modified FLASH Power-Switching
Removed Housekeeping Mux Channel Assignment Table (now included
in Reference 5).

F 06 August 2008 Added debug UART facility for S/C Interface (temporary for initial test)
Added memory mapped I/F for FLASH and FLASH I/O based controls
Modified DFB-DMA: as of this revision all channels can be directed to
either SDRAM or SRAM.

G 09 September 2008 Removed Latchup Protection
Slight modification to DFB CDI Status -- added error detect
Reduced # of DFB DMA channels to 16 (APIDs 0x40 - 0x4F)
Changed DFB DMA High Rate DMA Swap Option to 128Hz
Added DFB DMA buffer overflow error detection
S/C Telemetry I/F simplification (removed double-buffering)

H 21 October 2008 UART-DMA page size reduced to 1Kbyte
Added details relating to DFB DMA and S/C DMA Subsystems

I 18 November 2008 Added details relating to the BEB and PCB Interfaces
Added Board-ID and a few minor comments and modifications

J 10 December 2008 Modified BEB DAC Interface
Defined ETU/FLIGHT Debug Interface
Added FLASH subsystem details

K 27 January 2009 FLASH Subsystem description updated
L 27 February 2009 FLASH Subsystem Error Detection and Diagnostic Logic detailed

SDRAM PowerOn Cntl restored to the DCBCtl Reg Description
M 18 May 2009 DIAG LEDs increased to 8-bit wide, DIAG SWITCH eliminated

SDRAM ECC Multibit and Single Bit error counters cleared at the
beginning of each scrub cycle
Corresponds to Rev. C3

N 31 Aug 2009 Changed LVPS- SYNCH-CLOCK from 839KHz to 799KHz
Corresponds to Rev. C4

O 23 Nov 2009 Eliminated S/C Telemetry High-speed Mode & Minor Corrections to
document
Corresponds to Rev. C5
23 November 2009 4 RBSP_EFW_DCB_001O

1.0 Introduction

The Data Controller Board (DCB) is a component of the RBSP-EFW IDPU. It receives com-
mands from the Spacecraft Processor and manages the Electric Field Instrument (EFI). The
DCB communicates with the BEB, DFB and PCB subsystems via custom interfaces, receiving/
storing data and forwarding instrument commands and register loads.

FIGURE 1. DCB: Overall Block Diagram

Figure 1 shows an overview of the main subsystems comprising the DCB. The micropro-
cessor is a Z80 8-bit microcontroller (implemented in the FPGA via an IP Core). The
flight FPGA is the Actel RTAX2000S, with the CAST Inc IP core instantiated as the CPU.

The CPU and logic subsystems are supported by an 32Kx8 Boot Rom, SEU-Immune
Static RAM and EEPROM. (NOTE: the 128Kx8 SRAM shown is segmented and shared
by the FPGA subsystems.) The FPGA handles the processor bus control and provides reg-
isters for accessing the various sections of memory. Also included in the FPGA are the
Instrument I/Fs, the SDRAM controller, the FLASH Memory Controller, Error Detection/
Correction for SDRAM and FLASH, the S/C Interface Logic, DMA and data management
control, analog housekeeping control, and timing/time-tagging support.
23 November 2009 5 RBSP_EFW_DCB_001O

The DCB resides on a 6U VME board, connecting to the backplane via the standard VME 96 pin
connector. Power is received through the backplane connection, which is also used to communi-
cate with the following IDPU based instrument interfaces and subsystems:

The Digital Fields Board (DFB) - IDPU resident interface board which talks to the EFI, SCM and
MAG FGM. The Interface Board also performs processing and programmable filtering.

The Boom Electronics Board (BEB) - IDPU resident interface board, controls sensor biasing and
modes. The BEB receives low level digital control signals and outputs analog telemetry.

The Power Supply and Control Board (LVPS/PCB) - IDPU resident subsystem includes the Boom
Deployment Power Switching. The PCB receives low level digital control signals and outputs
analog telemetry.

A harness is used to connect the DCB to the C&DH Board (S/C Processor). This C&DH Inter-
face contains a UART based Telemetry Interface (115.2KBaud), a timing signal (1Hz Clock and
“Spin Pulse”), and a UART (115.2Kbaud) based Command Interface.
23 November 2009 6 RBSP_EFW_DCB_001O

2.0 Subsystem Descriptions

2.1 Clocks

The DCB receives one clock from the spacecraft, a 1 Hz tick (1PPS), correlated to the S/C time
broadcast. (The 1PPS line is also used to transmit the SpinPulse. The differentiation is accom-
plished via pulse-width coding.)

The DCB internal timebase is set by a local oscillator (SCLK = 16.78MHz) which is used by the
FPGA as the overall system clock. SCLK is further divided to generate the timebase clock used
by the DFB(8.39 MHz), a 256HZ CPU Interrupt, and a 1Hz Synch (CLK1HZ) used by the DFB
and DCB. A derivative of SCLK, 799KHz, 52.4%(HI)/47.6%(LO) duty cycle, provides a power
converter synch clock.

2.2 Reset

The overall DCB reset, generated by the FPGA, is an OR of two sources: a power-on hardware
reset (generated by an RC delay network and AC14 gate) and a watchdog reset.

A watchdog reset pulse (duration = 3 μs) is generated if the CPU does not write to the Watchdog
Reset Clear register for a period of 3 seconds (3 ticks of the internally generated 1 Hz clock). An
external jumper is provided, allowing for disabling the watchdog during debug. If the jumper is
installed, the watchdog reset is disabled; otherwise the watchdog reset is always enabled. Watch-
dog Reset detect is available as status.

2.3 CPU

The CPU is an FPGA based Z80 microcontroller, running at 16.78MHz. Support circuitry in the
FPGA includes bus timing and memory/arbitration/decode logic.

2.3.1 Debug Interface

The DCB debug connections allow for external diagnostic peripherals and monitoring of the CPU
Bus.

The debug subsystem includes a RS232 compatible UART, mapped into Z80 I/O space and
decoupled via 128 byte FIFOs in both directions. The Debug UARTs are detailed in their Register
descriptions, starting on page 20.

The DCB prototype has been constructed using a reprogrammable Actel FPGA (the A3P1000, a
ProASIC3 FLASH based device). The prototype board (different FPGA footprint than flight)
includes enough testpoints to facilitate monitoring of the Z80-Core and an option for an external
discrete Z80 processor. Logic analyzer and Debug-UART connectors included on the main
board.
23 November 2009 7 RBSP_EFW_DCB_001O

The ETU uses a dedicated “debug connector” that feeds the following signals to an auxiliary
“debug board”. The debug connector includes:

The ETU Debug configuration allows the z80 CPU to boot from either the on-board ROM or an
external debug board based ROM. Four of the MISCCNTL signals are allocated for this purpose.
The remaining eight MISCNTL signals are used for LEDs.

The MBUSCYCTYPE, used to facilitate Logic Analyzer tracing is defined as follows:

 LASTROBE(1:0) are driven by MBUS Read and Write Strobes. LASTROBE(2) is a spare.

Debug Connector Net Name Function Driven by
MEMADDR(16:0) Memory Address Bus DCB-FPGA
MEMDATA(7:0) Memory Data Bus Both (BiDIR I/O)
MBUSCYCTYPE(3:0) Debug decode (see below) DCB-FPGA
MISCCNTL(11:0) Debug control/indicators (see below) Both (Split Inputs/Outputs)
LASTROBE(2:0) Logic Analyzer Clocks DCB-FPGA
DBG_NMI_PBSWITCH NMI Input to CPU (debounced in FPGA) Debug Board
DBG_RESET_PBSWITCH RESET Input (debounced by RC circuit) Debug Board
RxD Debug UART Receive Port Debug Board
TxD Debug UART Transmit Port DCB-FPGA
Vcc_3.3 3.3 V. Supply connects to DCB supply

via series resistor
GND Ground to DCB ground

Bus Assignment Signal Name/Function Comments
MISCCNTL(0) ALTBOOTREAD
MISCCNTL(1) ALTBOOTWRITE
MISCCNTL(2) ALTBOOTCS
MISCCNTL(3) ALTBOOTSEL Pulled up on DCB, Ground on Debug board via

jumper for debug board PROM boot select
MISCCNTL(7:4) DBG_LED(7:4) Debug board based LED indicators - upper nibble
MISCCNTL(11:8) DBG_LED(3:0) Debug board based LED indicators - lower nibble

Bus Assignment Signal Name/Function Comments
MBUSCYCTYPE(3) MBUS RD/WR 1=> READ; 0 => WRITE
MBUSCYCTYPE(2) MBUS DMA/CPU Cycle 1=> CPU; 0 => DMA
MBUSCYCTYPE(1:0) MBUS CYCLE DEF During DMA access:

00 => DFB
01 => TLM
10 => FSH
11 => CMD

During CPU access:
00 => SRAM
01 => PROM
10 => EEPROM
11 => OTHER (CPU-FLASH or ADC)
23 November 2009 8 RBSP_EFW_DCB_001O

2.3.2 Interrupts

Unlike the 8085, the Z80 has a general interrupt signal designed for connection to one of the Z80
Peripheral Interrupt controllers. The “Mode 1” configuration provides one interrupt that vectors to
038H. Hardware subsystems that can interrupt the CPU are:

The various interrupt sources are ORed together; the CPU can determine which interrupt(s) are
active by reading the Status flags. Any of the three interrupts can be enabled/disabled by software,
allowing the CPU to run in polled or interrupt driven mode on a per subsystem basis.

The proto and debug boards include an NMI Interrupt pushbutton switch, debounced by the
FPGA.

2.4 CPU Memory

The CPU bus is directed by the FPGA to a memory bus containing a boot ROM (32Kx8 CMOS
device), an external SRAM (128Kx8), and a EEPROM (128Kx8). (The EEPROM also contains
internal protection mechanisms as well as an FPGA administered “write-protect”.) At reset, the
processor fetches from address 0, where boot ROM is mapped. When the ROMON bit is cleared,
SRAM is mapped into the lower section of CPU memory, but ROM is still accessible at an upper
location in the linear memory map (so it can be used to store canned parameters, tables, etc.).

ROM and EEPROM accesses incur three wait states; SRAM accesses are zero wait states.

The Z80, with its 16-bit address bus, provides for a 64Kbyte memory space. In order to access the
larger memory devices, the FPGA includes a memory paging mechanism, as described in the fol-
lowing section.

Interrupt Source Description
TimerTick Latched version of the timing interrupt (256 Hz).
Telemetry DMA Latched version of TLM UART DMA done interrupt
FLASH Memory DMA FLASH Memory DMA
23 November 2009 9 RBSP_EFW_DCB_001O

2.4.1 CPU Memory Map

 The FPGA decodes Z80 addresses as follows:

For memory accesses (when the Z80 signal IORQ=0), the mapping is:

Following a reset, the ROMON bit (read-writable via the Control Register) is asserted. When
ROMON = 1, memory accesses to the lower 32K result in a fetch from ROM. When ROMON =
0, the entire non-paged memory area maps to the lower 56K of SRAM.

The upper 8Kbytes of memory addresses the full linear memory map via two FPGA based Page
Registers, writable via the register interface. The Page Registers, address pointers spanning
MemAdr[28:12], default to zero at reset. With this configuration a data access to upper CPU
addresses such as 0xE000 actually result in an access to SRAM address 0. This may be useful for
copying from ROM to lower SRAM at startup.

A “Low-Half Write Protect” control prohibits CPU writes to the lower 32Kbytes of CPU memory.
Upon reset, writes are enabled; in order to disable, the CPU sets a Write Disable Control Register
bit. The Low-Half Write Protect applies to both paged and non-paged addressing modes. DMA
writes are always prohibited from the lower half of SRAM. Both CPU and DMA SRAM write
violations are flagged and available to the CPU as status.

0000

FFFF

32K of PROM*

56K of SRAM
Address
(HEX)

8000

Page 0 - 4K
Page 1 - 4K

E000

* Inst Space Decode: Lower 32K selects ROM only when ROMON = 1
Selects SRAM only when ROMON = 0

F000
23 November 2009 10 RBSP_EFW_DCB_001O

2.4.1.1 Full Linear Memory Map

Lower memory address are directly driven by the processor; upper memory address and chip
selects are determined by the Page Registers.

The full linear map of external memory is shown below:

FIGURE 2. DCB Full Linear Memory Map

The Page Registers, along with the CPU address, are used to select a region in the linear memory
map. The 17-bit Page Registers define pointers for MemAdr[28:12] of the Linear Memory Array.
Note: bit 28 selects SDRAM.

Smaller devices (such as ADC-Data and FLASH CPU Mode) alias within their regions.

Accesses to unused areas result in a no-op bus cycle (normal bus cycle termination, but no chip
selects are generated). Similarly, if SDRAM is accessed when powered off, a no-op cycle occurs.

Note: the upper quadrant SDRAM is reserved for ECC check-bits when Error Correction is
enabled.

Null Accesses

If the CPU performs an access to an undefined area of the memory map, the bus control sub-
system performs a 0 wait state cycle, but treats the access as a “No-op”. No chip selects are gen-
erated and reads will return indeterminate data. Accesses to SDRAM when the SDRAM has not
been activated are treated as null accesses and flagged as such.

0000

Address
(HEX)

SDRAM

10000000

20000
SRAM
 128Kx8

1FFFFFFF

256Mx8

EEPROM
128Kx8

40000
ADC-Data:

EEPROM
128Kx8

80000 ROM 32Kx8

100000
SPARE - unused

Upper byte: 40001
Lower byte: 40000

C0000
FLASH - CPU Mode
23 November 2009 11 RBSP_EFW_DCB_001O

2.4.2 CPU I/O Space

Z80 I/O space, selected with IORQ=0, is consists of DCB FPGA based registers devoted to the
various DCB & IDPU subsystems (i.e. DCB Control, CDI Interface, Analog Housekeeping). Reg-
ister definitions appear below:

DCB-FPGA Register Definitions.

I/O Addresses allocated to the DCB based registers, are defined below:

NOTE: Unless otherwise noted, DCB-FPGA Register based counters start counting at zero.

Addr
(hex) Read Register Write Register
10 Control (dcbCtl) - same as write value Control (dcbCtl) -

Bit 7 - Spare
Bit[6:4]: Interrupt Enables (all

default to 0, disabled, at reset)

 Bit 6 - Enable FLASH DMA int

 Bit 5 - Enable Tlm Int

 Bit 4 - Enable Timer Int

Bit 3 - Memory Low Half Write disable
- prohibits CPU writes to the
lower half of Z80 memory space
(DMA writes are always blocked
from this region). Defaults to 0,
writes enabled.

Bit 2 - EEPROM write enable - defaults
to 0, writes disabled

Bit 1 - SDRAM Power: Controls 3.3V
Power to SDRAM array and associ-
ated buffers. Default is 0 at
power on reset -- SDRAM off. (NOT
cleared by watchdog reset.)

Bit 0 - ROMON - Boot ROM Disable: Con-
trols mapping of the Boot ROM;
reset (power on or watchdog)
default is 1, ROM enabled

11 Page Register 0 (PgReg0Lo) - Lower Bits
- same as write value

Page Register 0 (PgReg0Lo) - Lower Bits
Bit[7:0] - CPU MemPage Addr[19:12]

12 Page Register 0 (PgReg0Hi) - Upper Bits
- same as write value

Page Register 0 (PgReg0Hi) - Upper Bits
Bit[7:0] - CPU MemPage Addr[27:20]

13 Page Register 0 (PgReg0SD) - SDSel -
same as write value

Page Register 0 (PgReg0SD) - SDSel
Bit[0] - CPU MemPage Addr[28]

14 Page Register 1 (PgReg1Lo) - Lower Bits
- same as write value

Page Register 1 (PgReg1Lo) - Lower Bits
Bit[7:0] - CPU MemPage Addr[19:12]

15 Page Register 1 (PgReg1Hi) - Upper Bits
- same as write value

Page Register 1 (PgReg1Hi) - Upper Bits
Bit[7:0] - CPU MemPage Addr[27:20]

16 Page Register 1 (PgReg1SD) - SDSel -
same as write value

Page Register 1 (PgReg1SD) - SDSel
Bit[0] - CPU MemPage Addr[28]

18 DIAG Port - (LEDReg/SwitchStat) ‐
 Bits[7:0] - SWITCH(7:0) (proto)

 Bits[7:0] - LEDS[7:0] (ETU/Flight)

DIAG Port - (LEDReg) ‐
 Bits[7:0] - LED(7:0) (ETU/Flight &

proto)
23 November 2009 12 RBSP_EFW_DCB_001O

1A Auxiliary Status (aux_Stat) ‐
Bit[7] - Spare
Bits[6:4] - Board ID (set via
external jumpers)

Bit[3] - SDRAM_Active - Indicates
SDRAM is ready (power on and initial-
ization complete)
Bit[2] - SDRAM Null Cycle - Indicates
that a subsystem attempted and SDRAM
access prior to SDRAM activation
Bit[1] - CDI (DFB Cmd) Busy - CMDBUSY
Bit[0] - CDI(DFB Cmd) CMDAVERRDET -
Interface Error Detect Flag

spare

1B Status Register (statReg)
Bit[7] - Watchdog Reset Detect
Bit[6] - DMA LH Mem Write Err Detect
Bit[5] - CPU LH Mem Write Err Detect
Bit[4] - CPU Bus Null Cycle Detect
Bit[3] - Latched CLK1HZ (Sample Time)
Bit[2] - Latched S/C PulErrDet
Bit[1] - Latched SpinPulDet (from S/C)
Bit[0] - Latched 1PPS Det (from S/C)

Pulse Register (pulReg) - Writing to
this register with the appropriate
bit(s) set causes the following
actions:
Bit[7] - Clear Latched Watchdog Reset

Detect
Bit[6] - spare
Bit[5] - Clear Latched DFB Interface

Error Detect Flag (CMDAVERRDET)
Bit[4] - Clear Memory Error Detect

(clears CPU Bus Null Cycle, CPU LH
Mem Write Err, DMA LH Mem Write Err
and SDRAM Null Cycle detects)

Bit[3] - Clear Latched CLK1HZ
Bit[2] - Clear Latched S/C PulErrDet
Bit[1] - Clear Latched SpinPulDet
Bit[0] - Clear Latched 1PPS Det

1C Interrupt Status Register (intStatReg)
Bit[2] - Latched TIMInt
Bit[1] - Latched TLMDMAInt
Bit[0] - Latched FLASHDMAInt

Interrupt Clear Register (intClrReg)-
Bit[2] - Clear Latched TIMInt
Bit[1] - Clear Latched TLMDMAInt
Bit[0] - Clear Latched FLASHDMAInt

1D -
1E

spare

1F FPGA Version Number (fpgaVers) -
Bits[7:0]

The protoboard FPGA Versions start at
0x80 (i.e. Rev. 0x84), the ETU-FLASH
Revs start at 0xC0

Watchdog Reset Clear (WATCHDOG) - a
write of X5 (lower nibble = 5; upper
nibble is a don’t cares) to this
address “stomps” on the watchdog
timer. This should be done at least
every 2 seconds in order to prevent a
watchdog reset.

20 Delta MET Latch Lo (dMETLo) - (MET to
Sample Counter - low byte)

Bit[7:0] - Internal Counter[16:9]
(latched at the S/C 1PPS)

21 Delta MET Latch Hi (dMETHi) - (MET to
Sample Counter - high byte)

Bit[7] - Seconds (rollover)
Bit[6:0] - Internal Counter[23:17]
(latched at the S/C 1PPS)

Addr
(hex) Read Register Write Register
23 November 2009 13 RBSP_EFW_DCB_001O

22 Internal Counter Lo (ctrLo) - (Timebase
Counter - low byte)

Write (any data) to this address
before reading the count

Bit[7:0] - Internal Counter[16:9]
(latched at write to this address)

(ctrLo) - Write of any data to this
address latches the Timebase counter

23 Internal Counter Hi (ctrHi) - (Timebase
Counter - high byte)

Bit[7] - Seconds (rollover)
Bit[6:0] - Internal Counter[23:17]
(latched at write to ctrLo address)

24 SpinPulse Time Lo (spTmLo) -
Bit[7:0] - Internal Counter[16:9]
latched at SpinPulse Detect

25 SpinPulse Time Hi (spTmHi) -
Bit[7] - Seconds (rollover)
Bit[6:0] - Internal Counter[23:17]
latched at SpinPulse Detect

26 ADC Control (ADCCtl)
Bit[7] - ADC Shutdown - defaults to
zero (ADC in “nap mode”) at reset

Bits[2:0] - AMUX address

ADC Control (ADCCtl) ‐
Bit[7] - ADC Shutdown - defaults to
zero (ADC in “nap mode”) at reset

Bits[2:0] - AMXCH[2:0] - AMUX address

27 ADC Conversion Start (ADC_CONV) -
Any write to this address pulses the
SOC line of the ADC, causing a conver-
sion. Data can subsequently be read
back via Memory Mapped Registers
(see Figure 2, “DCB Full Linear Memory
Map,” on page 11)

28 Inst Cmd - DatLo - (CDIDatLo) ‐
Bits[7:0] - CommandData (bits 7:0
of the 24 bit command word)

Inst Cmd - DatLo - (CDIDatLo) ‐
Bits[7:0] - CommandData (bits 7:0
of the 24 bit command word)

29 Inst Cmd - DatHi - (CDIDatHi) ‐
Bits[7:0] - CommandData (bits 15:8
of the 24 bit command word)

Inst Cmd - DatHi - (CDIDatHi) ‐
Bits[7:0] - CommandData (bits 15:8
of the 24 bit command word)

2A Inst Cmd - Command ID (CDIID) ‐
Bits[7:0] - CommandData (bits 7:0 of

the 24 bit command word).

Inst Cmd - Command ID (CDIID) ‐
Bits[7:0] - CommandID (bits 23:16 of

the 24 bit command word)

2B Command Start (CDIStart) -
Writing any value to this register
starts the shift of the previously
loaded command.

(NOTE: The DFB CDI Registers (ID,
Command Data and CDIStart) should not
be written to when CMDBUSY bit is
asserted. If this occurs, the writes
are ignored and the and error flag,
CMDAVERRDET, is set)

(Command I/F Status is available at
the AuxStat Register)

2C PCBCmdData (PCBCmdDat)
Bits[7:0] - CmdDat to be shifted to

the PCB

PCBCmdData (PCBCmdDat)
 Bits[7:0] - CmdDat to be shifted to

the PCB

Addr
(hex) Read Register Write Register
23 November 2009 14 RBSP_EFW_DCB_001O

2D PCB Command (PCBCmdStat)
Bit[1] - PCB Command Error (set if

PCBCmdStart is issued illegally, in
which case the command is ignored)

Bit[0] - PCB Command Interface Busy

PCB Command (PCBCmd) -
Bit[1] - ClrPCBCmdErr - Writing a one

clears the PCB Command Error Flag

Bit[0] - PCBCmdStart - Writing a one
starts the shift of the data previ-
ously loaded into the PCBCmdDat
Register if the interface is not
busy.

2E -
2F

spare

30 ECC Control (eccCtl)
Bit 7 - ECCSTATE -status (0-> scrubber
has not yet completed initialization)

Bit 6 - ScrubCSErrDet - Scrubber Chip
Select Error detect - status feedback
indicating that an SDRAM client has
attempted to use the scrubber segment
(upper quadrant) when ECC is enabled.
Cleared by ECCErrClr

Bits[5:4] - ECC Scrubber Upper Address
- ScrubAddr[27:26] (also see Regs
ECCAdrn)

Bits[3:0] same as write values

ECC Control (eccCtl) -
Bits[7:4] - not used
Bits[3:2]: ECC Subsystem Scrub Period

as follows:
0 -> 7.68μs
1 -> 250μs
2 -> 2ms
3 -> “ON-DEMAND”
Default is 0 at Reset.

Bit 1 - Scrub Test Mode - Defaults to
zero at reset - 0-> Normal Mode,
1 -> Test Mode

Bit 0 - Scrub Enable - Defaults to
zero at reset, scrubbing disabled.

31 ECC SingleBit ErrCnt (SBErr) ‐
Bits[7:0] - SBErrCnt[7:0]

ClearECCErrs (ECCErrClr) ‐
Writing any data to this address the
ScrubCSErrDet (read back at address
30)

NOTE: ECCErrClr is asserted during
SDRAM power-off periods.

32 ECC MultBit ErrCnt (MBErr) -
Bits[7:0] - MBErrCnt[7:0]

ECCScrub Pulse (ECCScrPul) -
Writing any data to this addresses

causes a scrub cycle to occur when
scrub period is set to “ON DEMAND”

33 ECC CheckBit Register (ECCCkBitsJam) ECC CheckBit Register (ECCCkBitsJam)
(used in testmode)

Bits[7:0] - ECCCkBitsJam[7:0]

 Bit 7: Tag Bits[6:0]: Checkbits

34 ECC Scrubber Address (ECCAdr0) ‐
Bits[7:0] - ScrubAddr[9:2] - Scrubber
Status feedback - running address
pointer (longwords)

35 ECC Scrubber Address (ECCAdr1) ‐
Bits[7:0] - ScrubAddr[17:10] -
Scrubber Status feedback

36 ECC Scrubber Address (ECCAdr2) ‐
Bits[7:0] - ScrubAddr[25:18] -
Scrubber Status feedback

37 ECC Last Checkbits Read (ECCCkBitsRd) ‐
Bits[7:0] - ECCCkBitsRd[7:0] -
Scrubber Status feedback

Addr
(hex) Read Register Write Register
23 November 2009 15 RBSP_EFW_DCB_001O

40 TLM Control Register (TLMStat) ‐
Bit[6] - PageAddr[28]

Bit[5] - Aliveness Status Flag

Bit[4] - Power Down Request Flag

Bit[3] - Spare

Bit[2] - TLMBCErrDet

Bit[1] - TLMBQErrDet

Bit[0] - Enable TLM - reads back as
written

TLM Control Register (TLMCtl) ‐
Bit[6] - PageAddr[28]

 - MSBit of Next PageAddress

Bit[5] - Aliveness Status Flag to be
inserted into next packet

Bit[4] - Power Down Request Flag to be
inserted into next packet

Bit[3] - Spare

Bit[2] - Clear Error Detects
(TLMBCErrDet & TLMBQErrDet) - pulse

Bit[1] - Start Transmission of next
queued TLM-Buffer - pulse

Bit[0] - Enable TLM - defaults to 0,
disabled (which holds the TLM sub-
system in a reset state)

41 TLM Page Lo (TLMPAdrLo) ‐ same as
write value

TLM Page Lo (TLMPAdrLo) ‐
PageAddress of Next TLM Tlm Buffer

Bits[7:0] - TLM Page[19:12]

42 TLM Page Hi (TLMPAdrHi) - same as
write value

TLM Page Hi (TLMPAdrHi) ‐
PageAddress of Next TLM Tlm Buffer

Bits[7:0] - TLM Page[27:20]

43 TLM Length Lo (TLMLenLo) - same as
write value

TLM Length Lo (TLMLenLo) - Length (in
Longwords) of Next TLM Tlm Buffer
(Reminder: Program to #Longwords - 1)

Bits[7:0] - TLM Length[7:0]

44 TLM Length Hi (TLMLenHi) & State
Bits[6:4] - TLM State

 000 -> IDLE; nonzero -> Active

Bits[1:0] - TLM Page[9:8]

TLM Length Hi (TLMLenHi) ‐
Length of next TLM Tlm Buffer

Bits[1:0] - TLM Length[9:8]

45-
47

spare spare

48 TLM Tlm - CurAdr- B0 (TLM0CAdr)
(Current Address Pointer)

Bits[7:2] - TLMCurAddr[7:2]

NOTE: TLM Current address is a
dynamic value and may change during
the period required to read all four
bytes. The FSW should make allow-
ances for this possibility; when the
buffer is actively being read out,
the lower byte will increment
approximately every 350μs at
115KBaud

49 TLM Tlm - CurAdr - B1 (TLM1CAdr)
Bits[7:0] - TLMCurAddr[15:8]

4A TLM Tlm - CurAdr - B2 (TLM2CAdr)
Bits[7:0] - TLMCurAddr[23:16]

4B TLM Tlm - CurAdr - B3 (TLM3CAdr)
Bits[4:0] - TLMCurAddr[28:24]

4C-
4F

unused unused

Addr
(hex) Read Register Write Register
23 November 2009 16 RBSP_EFW_DCB_001O

50 BEB_DACCTL (BEB_DACCTL) ‐
Bit[7] - BEB DAC Interface Error

Detect

Bit[6] - BEB DAC Interface Busy

Bit[5:2] - spare

Bit[1:0] - DAC Register Address

BEB_DACCTL (BEB_DACCTL) ‐
Bit[7] - Clear BEB DAC I/F Error

Detect

Bit[6] - DACXMIT - starts transmission
of the DAC Command String if the
interface is not busy.

Bit[5] - DACLOAD - creates the LDAC
pulse, causing the BEB DACs to
transfer data from the holding reg-
isters to the DAC output registers

Bit[4:2] - spare

Bit[1:0] - DAC Register Address

51 BEB AMux Ctl (BEB_AMUXCTL) ‐ same as
write value

BEB AMux Ctl (BEB_AMUXCTL) ‐
Bit[7:6] - spares

Bit[5:4] - BEB_AMUXSEL[1:0]

Bit[3] - spare

Bit[2:0] - BEB_AMUXADR[2:0]

52 BEB AC Test Ctl Lo (BEB_ACTestLo) ‐
same as write value

BEB AC Test Ctl Lo (BEB_ACTestLo) ‐
Bit[7:0] - BEB_ACTESTFREQ[7:0]

53 BEB AC Test Ctl Hi (BEB_ACTestHi) ‐
same as write value

BEB AC Test Ctl Hi (BEB_ACTestHi) ‐
Bit[7] - Enable ACTEST2

Bit[6] - Enable ACTEST1

Bit[5:4] - spares

Bit[3:0] - BEB_ACTESTFREQ[11:8]

54 BEBDAC IC0 Lo (BEB_DACIC0REGL) ‐
Bits[7:0] - DACIC0Data[7:0]

BEBDAC IC0 Lo (BEB_DACIC0REGL) ‐
Bits[7:0] - DACIC0Data[7:0]

55 BEBDAC IC0 Hi (BEB_DACIC0REGH) ‐
Bits[7:0] - DACIC0Data[15:8]

BEBDAC IC0 Hi (BEB_DACIC0REGH) ‐
Bits[7:0] - DACIC0Data[15:8]

56 BEBDAC IC1 Lo (BEB_DACIC1REGL) ‐
Bits[7:0] - DACIC1Data[7:0]

BEBDAC IC1 Lo (BEB_DACIC1REGL) ‐
Bits[7:0] - DACIC1Data[7:0]

57 BEBDAC IC1 Hi (BEB_DACIC1REGH) ‐
Bits[7:0] - DACIC1Data[15:8]

BEBDAC IC1 Hi (BEB_DACIC1REGH) ‐
Bits[7:0] - DACIC1Data[15:8]

58 BEBDAC IC2 Lo (BEB_DACIC2REGL) ‐
Bits[7:0] - DACIC2Data[7:0]

BEBDAC IC2 Lo (BEB_DACIC2REGL) ‐
Bits[7:0] - DACIC2Data[7:0]

59 BEBDAC IC2 Hi (BEB_DACIC2REGH) ‐
Bits[7:0] - DACIC2Data[15:8]

BEBDAC IC2 Hi (BEB_DACIC2REGH) ‐
Bits[7:0] - DACIC2Data[15:8]

5A BEBDAC IC3 Lo (BEB_DACIC3REGL) ‐
Bits[7:0] - DACIC3Data[7:0]

BEBDAC IC3 Lo (BEB_DACIC3REGL) ‐
Bits[7:0] - DACIC3Data[7:0]

5B BEBDAC IC3 Hi (BEB_DACIC3REGH) ‐
Bits[7:0] - DACIC3Data[15:8]

BEBDAC IC3 Hi (BEB_DACIC3REGH) ‐
Bits[7:0] - DACIC3Data[15:8]

5C BEBDAC IC4 Lo (BEB_DACIC4REGL) ‐
Bits[7:0] - DACIC4Data[7:0]

BEBDAC IC4 Lo (BEB_DACIC4REGL) ‐
Bits[7:0] - DACIC4Data[7:0]

5D BEBDAC IC4 Hi (BEB_DACIC4REGH) ‐
Bits[7:0] - DACIC4Data[15:8]

BEBDAC IC4 Hi (BEB_DACIC4REGH) ‐
Bits[7:0] - DACIC4Data[15:8]

5E-
5F

unused unused

Addr
(hex) Read Register Write Register
23 November 2009 17 RBSP_EFW_DCB_001O

60 UART CMD DMA Ctl/Stat (UDMA_STTS)
Bit[7] - CMD I/F Framing Error Detect

Bit[6] - CMD I/F Parity Error Detect

Bit[5] - CMD I/F DMA Buffer Overflow
Error Detect

Bit[4] - CMD I/F DMA Timeout Error
Detect

Bit[0] - Enable UART CMD DMA -
defaults to 0, disabled

UART CMD DMA Ctl/Stat (UDMA_CTL)
Bit[7] - Clear Latched Cmd I/F Errors

- (Pulse) (Framing, Parity, Timeout
and Overflow - readable at
bits[7:4]

Bit[4] - Arm next CMD DMA transfer
(Pulse)

Bit[0] - Enable UART CMD DMA -
defaults to 0, disabled

61 UART CMD PageReg (UDMA_CMD_PGA) ‐
same as write value

UART CMD PageReg (UDMA_CMD_PGA) ‐
Bit[6:0] - SCmdPAddr[16:10]

62 UART CMD LowCurAdr (UDMA_CMD_ADRL)
- Bits[7:0] = SCMDCurAddr[7:0]

(pointer to next address)
UART-DMA index address spans 1Kbyte

63 UART CMD HiCurAdr (UDMA_CMD_ADRH)
Bits[1:0] = SCMDCurAddr[9:8] (pointer

to next address)

64 -
65

spares spares

66 DFB Ctl Register (DFB_CTL) ‐
Bits[7:4] - DFB Register Pointer

Bit[3:1] - spares

Bit[0] - Enable DFB DMA - reads back
as written

DFB Ctl Register (DFB_CTL) ‐
Bits[7:4] - DFB Register Pointer -

selects one of the DFB DMA channels
for Read or Write Access

Bit[3] - Clear Latched DFB I/F Errors
Detect (Pulse) (framing and parity,
read back at Addr 67)

Bit[2] - Clear All DMA-Channel Error
Detect Flags - Buffer Overflow
Detect and Memory Timeout Error
Detect (read back at Addr 78 - Addr
7B)

Bit[1] - Clear DMA-Channel Buffer Swap
Detect Flags - (read back at Addr
76 - Addr 77)

Bit[0] - Enable DFB DMA - defaults to
0, disabled (which holds the DFB
DMA subsystem in a reset state)

67 DFB Interface Errors (DFB_IFERR) -
Error flags from the two DFB TLM I/Fs

Bit[3:2] - DFB Parity Error Detects

Bit[1:0] - DFB Framing Error Detects

(NOTE: All I/F Error Detects remain
set until explicitly cleared by the
CPU)

spare

The following register group Addr 68 - Addr 6F corresponds to all the DFB DMA chan-
nels. Register access is determined by the DFB Register Pointer, a DFB Ctl Register
field.

68 DFBCH Page Lo (DFBCH_PGAL) ‐
Bits[7:0] - DFBCH Next Page[19:12] of
the DFB channel pointed to by DFB Reg-
ister Pointer

DFBCH Page Lo (DFBCH_PGAL) ‐
Next PageAddr of for DFBCH Buffer

pointed to by DFB Register Pointer

Bits[7:0] - DFBCH Page[19:12]

Addr
(hex) Read Register Write Register
23 November 2009 18 RBSP_EFW_DCB_001O

69 DFBCH Page Hi (DFBCH_PGAH) ‐
Bits[7:0] - DFBCH Next Page[27:20] of

the DFB channel pointed to by DFB
Register Pointer

DFBCH Page Hi (DFBCH_PGAH) ‐
Next PageAddr of for DFBCH Buffer

pointed to by DFB Register Pointer

Bits[7:0] - DFBCH Page[27:20]

6A DFB Current Address B0 - pointed to by
Index previously set by FSW via DFB
Register Pointer (DFBCAdr0) ‐

Bits[7:1] = DFBCurAddr[7:2]

6B DFB Current Address B1 (DFBCAdr1) ‐
Bits[7:0] = DFBCurAddr[15:8]

6C DFB Current Address B2 (DFBCAdr2) ‐
Bits[7:0] = DFBCurAddr[23:16]

6D DFB Current Address B3 (DFBCAdr3) ‐
Bits[3:0] = DFBCurAddr[27:24]

6E DFB DMA Last Buffer Status Word
(DFB_LBSTATWDL)

Bits[7:0] - DFBLBUFSTAT[7:0]

6F DFB DMA Last Buffer Status Word
(DFB_LBSTATWDH)

Bits[7:0] - DFBLBUFSTAT[15:0]

The PageAdr28 Selects, Buffer Swap status/enables and Buffer Termination Selects for
all the DFB DMA channels are accessed via “mask” registers (70 - 79). Lower byte
mask: Bit 0 corresponds to DMA Channel 40, Bit 7 to DMA Channel 47; Upper byte mask:
Bit 0 corresponds to DMA Channel 48, and Bit 7 to DMA Channel 4F

70 same as write value DFB PageAdr28 for DFB DMA Channels
40-47 (DFB_PGA07)

Bits[7:0] - DFBCHP28ADR[7:0]

71 same as write value DFB PageAdr28 for DFB DMA Channels
48-4F (DFB_PGA8F)

Bits[7:0] - DFBCHP28ADR[F:8]

72 same as write value DFB DMA Buffer Swap Enable - Channels
40-47 (DFB_BSWAPEN07)

Bits[7:0] - DFBBSWAPENB[7:0]

73 same as write value DFB DMA Buffer Swap Enable - Channels
48-4F (DFB_BSWAPEN8F)

Bits[7:0] - DFBBSWAPENB[F:8]

74 same as write value DFB DMA Buffer Termination Option -
(DFB_BTERM07) 0-> 128 Hz; 1-> 1Hz
Channels 40-47

Bits[7:0] - DFBBTERM[7:0]

75 same as write value DFB DMA Buffer Termination Option -
(DFB_BTERM8F) 0-> 128 Hz; 1-> 1Hz
Channels 48-4F

Bits[7:0] - DFBBTERM[F:8]

76 DFB DMA Buffer Swap Status - Channels
00-07 (DFB_BSWAPSTAT07)

Bits[7:0] - DFBBSWAPSTAT[7:0]

Addr
(hex) Read Register Write Register
23 November 2009 19 RBSP_EFW_DCB_001O

77 DFB DMA Buffer Swap Status - Channels
08-0F (DFB_BSWAPSTAT8F)

Bits[7:0] - DFBBSWAPSTAT[F:8]

78 DFB DMA Buffer Overflow Error Flag -
Channels 00-07 (DFB_BOFLOWERR07)

Bits[7:0] - DFBBOFLOWERR[7:0]

79 DFB DMA Buffer Overflow Error Flag -
Channels 08-0F (DFB_BOFLOWERR8F)

Bits[7:0] - DFBBOFLOWERR[F:8]

7A DFB DMA Memory Timeout Error Flag -
Channels 00-07 (DFB_MEMTO07)

Bits[7:0] - DFBMEMTOERR[7:0]

7B DFB DMA Memory Timeout Error Flag-
Channels 08-0F (DFB_MEMTO8F)

Bits[7:0] - DFBMEMTOERR[F:8]

7C-
8F

spares spares

90 Debug UART Ctl (uDbgCtl)
same as write values

Debug UART Ctl (uDbgCtl)
Bit[3:2] - RateSel - defaults to 2

115.2KBaud

 0 => 38400; 1 => 57600

 2 => 115200; 3=> 230400

Bit[0] - Enable Debug UARTs - defaults
to 0, disabled

91 Debug UARTIN Status (uDbgInStat)
Bit[7] - UART-DIN FIFO FULL - status

Bit[6] - UART-DIN FIFO EMPTY - status

Bit[5] - spare

Bit[4] - UART-DIN SHIFTIDLE - (no
shift in progress) - status

Bit[3] - UART-DIN Parity Error Detect
(flags parity error at the serial
data input stage)

Bit[2] - UART-DIN Framing Error Detect
(flags framing error at the serial
data input stage)

Bit[1] - UART-DIN FIFO Full Error
Detect (flags data reject due to
overflow at the serial data input
stage)

Bit[0] - UART-DIN FIFO Empty Error
Detect (flags attempt to read when
no data is available)

Debug UARTIN Status (uDbgInStat)

Bit[0] - UINERRCLR - write to Bit 0 of
this address clears all the Debug
UARTIN Status Error detects (read
back in Bits[3:0] of this register)

92 Debug UARTIN FIFO - (uDbgInFDat)
Bits[7:0] - UART Data

Reads the next Debug UARTIN byte from
the FIFO (if read occurs when the
FIFO is empty, the UART-DIN FIFO
Empty Error is set, see above)

Addr
(hex) Read Register Write Register
23 November 2009 20 RBSP_EFW_DCB_001O

93 Debug UARTIN FIFO Remaining Bytes -
(uDbgInFBCnt) Bits[7:0] ‐ Number of
bytes in Debug UART In FIFO

NOTE: A 128 Byte FIFO decouples the
CPU from the UART-In data reception.

94 Debug UARTOUT Status (uDbgOutStat)
Bit[7] - UART-DOUT FIFO FULL - status

Bit[6] - UART-DOUT FIFO EMPTY - status

Bit[0] - UART-DOUT FIFO Full Error
Detect (flags attempt by CPU to
write to a full UART DOUT FIFO)

Debug UARTOUT Status (uDbgOutStat)

Bit[0] - UOUTERRCLR - write to Bit 0
of this address clears the UART-
DOUT FIFO Full Error (read back in
Bits[0] of this register)

95 Debug UARTOUT FIFO - (uDbgOutFDat)
Bits[7:0] - UART Data

Write the next Debug UARTIN byte to
the FIFO (if write occurs when the
FIFO is full, the UART-DOUT FIFO
Full Error is set, see above)

96 Debug UARTOUT FIFO Remaining Bytes -
(uDbgOutFBCnt) Bits[7:0] ‐ Number of
bytes in Debug UART Out FIFO

NOTE: A 128 Byte FIFO decouples the
CPU from the UART-Out data transmis-
sion.

97-
9F

Spares

A0 FLASH Control Reg (FLASHCtl)
Bit[7] - FLASHWRENB

Bit[6] - FLASHMODE

Bit[5] - spare

Bit[4] - FLASH Active (status only)

Bit[3] - FLASH_ON/OFF

Bit[2:0] - FLASHPWR[2:0]

FLASH Control Reg - (FLASHCtl)
Bit[7] - FLASHWRENB - sets FLASH Write
Enable - drives the FLASH subsystem
WRPROT_N (during power sequencing, the
FLASH Write Protect signal is con-
trolled by the hardware)

0-> write disable; 1-> write enable

(NOTE: should be set prior to initia-
tion of a DMA Transfer to the FLASH
Memory, or during CPU Diagnostic mode
writes; all other times, this bit
should be cleared.)

Bit[6] - FLASHMODE - chooses between
CPU memory mapped (0)and DMA (1) modes

(defaults to 1: DMA control)

Bit[5:4] - spares

Bit[3] - FLASH_ON/OFF -

0 -> Power Off; 1 -> module selected
by FLASHPWR Powered On

Bit[2:0] - FLASHPWR[2:0] - 3-8 decode
applied to enable one of the eight
FLASH modules when FLASH_ON/OFF = 1

A1 Spare

Addr
(hex) Read Register Write Register
23 November 2009 21 RBSP_EFW_DCB_001O

A2 FLASH DMAOpCtl (FDMAOpCtl)
same as write values

FLASH DMAOpCtl (FDMAOpCtl)
Bit[7] - FLASH DMA Programming Failure

Override -If a FLASH Program-
ming failure occurs: (0 -> DMA
Cycle terminates; 1-> DMA cycle
continues)

Bit[6] - FLASH DMA Timeout Override -
If a FLASH Status timeout
occurs: (0 -> DMA Cycle termi-
nates; 1-> DMA cycle continues)

Bit[5] - FLASH DMA Throttle (0 ->
Full-speed; 1-> inserts addi-
tional delay of 700 ns between
FDMA Requests)

Bit[4] - spare

Bit[3] - DMA Transfer Direction

 (0 -> Read Flash, 1 -> Write Flash)

Bit[2] - FDMAMPage[28] -SRAM/SDRAM
(to/from 0 -> SRAM; 1-> SDRAM)

Bit[1] - FDMAMPage[11] - normally set
to zero. If set to one, the DMA
transfer starts in the middle
of a 4Kbyte memory page.

Bit[0] - Enable FLASH ECC

A3 FLASH DMA Start PAddr (FDMAStartPage)
same as write values

FLASH DMA Start PAddr (FDMAStartPage)
Bit[5:0] - FSH_SRT_PA[5:0]

A4 FLASH DMA End PAddr (FDMAEndPage)
same as write values

FLASH DMA End PAddr (FDMAEndPage)
Bit[5:0] - FSH_END_PA[5:0]

A5 FLASH DMAAddrBlock Lo

(FDMAddrBlockLo)
same as write values

FLASH DMAAddrBlock Lo

 (FDMAddrBlockLo)
Bit[7:0] - FSH_BA[13:6]

A6 FLASH DMAAddrBlock Hi

(FDMAddrBlockHi)
same as write values

FLASH DMAAddrBlock Hi

(FDMAddrBlockHi)
Bit[6:4] - FSH_CS[2:0]

Bit[3:0] - FSH_BA[17:14]

A7 FLASH DMA Status (FDMAStat)
Bit[3] - FLASH Programming Failure

Error Detect

Bit[2] - FLASH Timeout Error Detect

Bit[1] - DMA IF Error Detect

Bit[0] - Transfer in Progress

FLASH DMA Pulse (FDMPulse)
Bit[3] - Clear Programming Failure

Error Detect

Bit[2] - Clear FLASH Timeout Error
Detect

Bit[1] - Clear DMA IF Error Detect

Bit[0] - Start DMA Transfer

A8 FLASH DMA Memory Page Lo - Start Addr

(FDMAMAdrLo) ‐ same as write value
FLASH DMA Memory Page Lo - Start Addr

(FDMAMAdrLo) ‐
Bits[7:0] - FDMAMPage[19:12]

A9 FLASH DMA Memory Page Hi - Start Addr

(FDMAMAdrHi) ‐ same as write value
FLASH DMA Memory Page Hi - Start Addr

(FDMAMAdrHi) ‐
Bits[7:0] - FDMAMPage[27:20]

Addr
(hex) Read Register Write Register
23 November 2009 22 RBSP_EFW_DCB_001O

2.5 Memory Bus Control/Arbitration

The CPU “MBUS” is home to the FPGA, SRAM, EEPROM, PROM and the ADC buffers.
Accesses are arbitrated by an FPGA resident MBUS control subsystem. Normally, the processor
owns the MBUS, which is used for code and data storage. The various DMA subsystems are allo-
cated slots in between the CPU cycles. If the CPU requests access during a DMA cycle, wait
states are inserted until the bus becomes available.

AA FLASH Current Page (FDMACurrPage) ‐
current page transfer when DMA is
active, last transferred page when
DMA is complete
Bits[5:0] -FDMAPAGE[5:0]

AB FLASH Latched Status (FDMALatStat) ‐
holds last FLASH status register data
read by the DMA subsystem
Bits[7:0] - FSTATREG[7:0]

AC -
BF

spares - to be used for DMA Current
Address and other status informa-
tion

spare

C0 FLASH Correctable ErrCnt (FCorErrCnt) ‐
Bits[7:0] -FCorErrCnt[7:0]

ClrFErrCounts (FLASHHCERRCLR) ‐
Writing any data to this address
clears the FLASH Correctable and
NonCorrectable Error Counters.

C1 FLASH NonCorrectable ErrCnt (FNCor‐
ErrCnt) ‐
Bits[7:0] -FNCorErrCnt[7:0]

C2 -
EF

spares - Feedback as status: Flash
Controller State, Current Address
Pointers, Latest FLASH Status Reg-
ister readout and various error
conditions

spares

F0 PROTO Board FLASH Power Switches -
(PFLASHPower)

same as write values

PROTO Board FLASH Power Switches -
(PFLASHPower)

Bit[3:0] - FLASHPWR[3:0]

NOTE: should be set to either all off
(0x0) or all on (0xF)

F1 PROTO Board FLASH Control/Status -
(PFLASHCntl)

same as write values + two status bits

Bit[5:4] - RDY/BUSY[1:0]

PROTO Board FLASH Power Switches -
(PFLASHCntl)

Bit[7] - FLASHENB - Enables Drivers to
Flash subsystem

Bit[6] - FLASHMODE - chooses between
CPU memory mapped (0)and DMA (1)
modes

Bit[3:0] - WRPROT[3:0]

0-> write protect; 1-> write enable

F2-
FF

spares

Addr
(hex) Read Register Write Register
23 November 2009 23 RBSP_EFW_DCB_001O

The MBUS Control/Arbiter allows the various subsystems to access SRAM using the a fixed pri-
ority arbitration as follows:

1. CPU 2. DFB-DMA 4. S/C (Cmd-DMA) 4. S/C (Tlm-DMA) 5. FLASH DMA

The DMA subsystems (accessing only SRAM) buffer data in units of four bytes before requesting
MBUS access. FLASH DMA cycles may be “throttled” in order to control the average MBUS
load.

2.6 Bulk Memory - SDRAM

The Bulk Memory, 256 Mbytes (one 256Mx8 module) of SDRAM (synchronous dynamic RAM),
resides on a private memory bus, controlled by the FPGA.

SDRAM is powered by the 3.3V supply via a local switch (controlled by the CPU via the FPGA
Register Interface). There is no overcurrent monitoring for the SDRAM. (SEL LET > 56MeV/
mg-cm3) or FLASH (SEL LET > 50MeV/mg-cm3).

Upon the application of power to the SDRAM array, the controller performs an initialization
sequence after waiting (about 1/2 second) for power stabilization. Accesses prior to completion of
initialization will be rejected, and indeterminate data returned to the requesting subsystem in the
case of reads. If the attempted access was initiated by a DMA client, a flag (SDRAM Null Cycle)
is set (available at the Aux_Stat Register). If the attempted access was by the CPU, the CPU Null
Cycle Detect Flag is set. Both flags are clearable via a common pulse (Clear Memory Error
Detect) register bit.

The FSW can verify that initialization has completed by checking the SDRAM_Active bit of the
aux_Stat Register.

The SDRAM control circuitry, resident in the FPGA, manages refresh and access control. Most
accesses to bulk memory, handled by the DMA controller, transfer DFB or FLASH data into the
SDRAM or read SDRAM data out to the FLASH or Telemetry subsystems. The CPU can read/
write the SDRAM array byte-wise via the Page Register facility.

The SDRAM manager allows the various subsystems to access SDRAM using the a fixed priority
arbitration as follows:

1. DFB-DMA 2. S/C (Tlm DMA) 3. CPU 4. Scrubber 5. FLASH DMA

2.6.1 SDRAM Error Correction Circuitry (ECC)

The FPGA includes an error detection/correction (scrubber) subsystem, which uses the upper sec-
tions of the SDRAM to store the error correction codes. The scrubber operates on data 4 bytes at
a time, generating a byte (ECC check-bits) in the ECC segment for every 32 bits in the data sec-
tion. Seven of the check-bits are the ECC code; the 8th bit is a “Tag”, indicating whether the
scrubber has validated the 4 byte region of memory. CPU writes invalidate the checkbits (tag is
cleared). The scrubber recomputes the checkbits and resets the tag when it gets back to the modi-
fied words.
23 November 2009 24 RBSP_EFW_DCB_001O

The ECC scrubber is set to operate on the lower 200MBytes (yielding 49152 4K data segments)
of SDRAM Module. The upper quarter of SDRAM, beginning at address (SDRAM Module
Base + 0xC000000), is reserved for the checkbits. If any SDRAM client other than the scrubber
attempts to read or write from the checkbit region while ECC is enabled, the ECC subsystem flags
an error (ScrubCSErrDet, readable/clearable at the ECC Control Register). If an access error
occurs, data writes are inhibited, and the corresponding “Tag” is invalidated. An illegal read
returns indeterminate data (and illegal TLM reads do not scrub).

Following validation of the SDRAM array the scrubber reads the memory continuously. Single
Bit errors are automatically corrected and counted. Multiple-bit errors are counted. The two
counters (Single Bit and Multiple Bit Errors), readable via the FPGA Register Interface, are
cleared by the hardware at the end of each scrub cycle. Each 8-bit counter “freezes” at the maxi-
mum count. The Scrubber Current Address is available as status, enabling the CPU to monitor the
error counts periodically, and determine if SDRAM failures are address dependent. It may be
possible for the Flight Software to adjust the scrub-rate based on error statistics.

ECC is also checked (and corrections made when possible) during 32-bit read accesses (scrubber,
telemetry and FLASH-DMA subsystem cycles). If the data tags aren’t set, the controller writes
the checkbits and tags the data. If the tags are set and a single-bit error is detected, corrected data
is forwarded to the S/C Telemetry DMA subsystem and the SBErr Counter is clocked. If a multi-
ple-bit error is detected, the MBErr Counter is clocked.

The ECC scrubbing rate can be set via the Control Register. The word-scrub rate can be varied
from 7.6μs to 1ms in “free-run mode”, allowing for total array scrub time of between approxi-
mately 6.4 minutes and 14 hours.

An “On-Demand” rate is also available. Selection of the “On-Demand” rate causes the scrubber
to be paused, while still retaining its state. In this mode, a scrub cycle is initiated via an FPGA-
based register write. This allows for a diagnostic “backdoor”, a pause and resume mechanism, or
for FSW managed slower scrub rates.

Upon startup, the scrubber begins the process of reading each value from SDRAM, and writing
the corresponding checkbits into the upper quadrant of the SDRAM. When it has completed read-
ing/verifying the lower three quadrants (assuming no CPU writes to SDRAM have occurred dur-
ing this process) every checkbit tag has been set. At this time ECCSTATE is asserted, indicating
that the scrubber has marked the entire array and is ready to begin checking. With ECCSTATE=1,
most scrubber cycles will only read memory.

When ECCSTATE=1, if a single bit error is detected, the corrected value will be written back into
the array. Multiple bit or indeterminate errors only clock the counter; no data is written back to
memory.

NOTE: Since multiple bit errors are not corrected by the hardware, it is possible that they will
clock the counter multiple times as the scrubber traverses memory repeatedly. Since the mini-
mum scrub period is 6.4 minutes, it is possible to reset the counter and track errors in realtime. A
stuck bit in the SDRAM array may show up as a single bit error (or possibly as a multiple bit error
if it occurs in conjunction with another bit flip). Generally, a stuck bit is recognizable in the
telemetry: the SBErr Counter will return a constant value over a group of scrub cycles; while for
SEUs, the SBErr Counter fluctuation will be transient. (NOTE: Since the data is scrubbed as it is
transferred to the spacecraft, a stuck bit may show up twice in one scrubber cycle when the packet
23 November 2009 25 RBSP_EFW_DCB_001O

is telemetered.) Stuck bits, generally correctable via an SDRAM power cycle, will accrue over
time and be reflected in the SBErr Counter baseline per scrub cycle.

When ECC is enabled, the SDRAM subsystem blocks all non-scrubber SDRAM client accesses
directed to the scrubber segment (the upper quarter). Instrument and CPU writes are ignored.
S/C Telemetry and CPU reads return indeterminate data. If a scrubber segment write is attempted,
the “Scrubber Chip Select ErrDet Flag” (status bit in the ECC Control Register) is set.

Note: If ECC is enabled prior to SDRAM initialization (evidenced by the assertion of
SDRAM_Active (auxStat Register)), the scrubber request causes the SDRAM Null Cycle Detect
flag to assert (also in the auxStat Register). This serves only as a flag that the ECC has been pre-
maturely activated, and causes no other errors. Once SDRAM becomes active, the scrubber
request is serviced and ECC continues unless disabled by the CPU. (The SDRAM Null Cycle
Detect flag remains set until cleared by the CPU.)

2.6.1.1 Scrubber Testmode

Scrubber Testmode (invoked by setting the Scrubber Testmode bit of the ECC Control Register)
allows the CPU to jam values into the upper quadrant. As additional diagnostic information, the
CPU is able to read (both in normal and test modes) the checkbits corresponding to the last long-
word operated on by the scrubber.

When in Testmode, the only change in ECC Controller operation involves CPU Writes. Nor-
mally, a non-scrubber initiated write invalidates the tag. However, in Testmode, CPU Write
accesses (always one byte) jam a “canned” byte, set by the CPU via the register I/F, into the
checkbit quadrant of the SDRAM corresponding to the accessed longword. This feature, along
with the “On-Demand” scrubber frequency, allows for extensive testing of scrubber functionality.
The CPU can corrupt one or multiple bits of either the data or checkbit portion of memory and
verify that the word is corrected (for single bit perturbations) and that the event is properly
counted.

2.7 FLASH Memory

The FLASH Memory (32 GBytes) is composed of eight 4GByte Memory Modules (3D-Plus
MMFN08408808S-D). Each 3D-Plus module includes eight 512Mx8 Micron FLASH Memory
devices (MT29F4G08AAA). The array is broken down into eight banks (separately powered)
with one module per bank.

The goal of the FPGA based logic is to streamline the intensive data-transfer operations between
FLASH and the DCB-based random access memory banks. The CPU is responsible for ongoing
FLASH management; the FPGA performs DMA transfers and error detection.

There are significant differences in the proto-board and ETU/Flight board FLASH capacities. The
protoboard FLASH array consists of four discrete Micron devices and implements diagnostic
mode only (due to the size limitation of the FPGA). Because of these differences, the protoboard
has been allocated its own two FPGA registers for FLASH operation, and the ETU/Flight board
and separate register set. The following description details the ETU/Flight board operation; pro-
toboard operation incorporates the FLASH Diagnostic Mode command protocol.
23 November 2009 26 RBSP_EFW_DCB_001O

Only one bank is powered-on at any one time.) The power switches are configured in the FPGA
as a 3-8 decoder. FLASH_ON/OFF, a register control bit, allows the CPU to turn all the modules
off. The default state following any reset (power-on and watchdog) is OFF.

The hardware asserts the Write-Protect pin during the power-cycle periods, and issues a “reset”
command to all die following any power-on. A FLASH_ACTIVE status flag, returned for the
powered array, indicates that the powered FLASH module is available (similar to the
SDRAM_Active status bit). (This entire process requires < 5 ms. Flash Power Switch ramp-up
time is on the order of 1 ms.) Once a module is available, it can be used in DMA mode, or
FLASH Diagnostic Mode (in which the CPU directly reads and writes the FLASH I/O registers
using a memory mapped interface). When in DMA mode, the hardware controls the FLASH I/O
and returns status via dedicated FPGA registers. In FLASH diagnostic mode, the CPU is respon-
sible for issuing the necessary commands, monitoring status, and controlling the state of the
write-protect signal. (NOTE: The default is FLASH DMA Mode. If FLASH Diagnostic Mode is
set via the register interface, the change takes effect when FLASH_ACTIVE is asserted and the
DMA subsystem is inactive.)

2.7.1 FLASH Addressing

Since only one FLASH module is powered on at any one time, the upper three bits of the FLASH
array address is simply the power switch setting (FSH_PWR[2:0]). The next three bits
FSH_CS[2:0] determine the chip select for each 4Gx8 module. The remaining address bits, inter-
nal to the 512Mx8 flash die are:

FSH_BA[17:6] - block addr; FSH_PA[5:0] - page addr; and FSH_CA[11:0] - column addr

When setting up a FLASH DMA transfer, the CPU specifies FSH_PWR, FSH_CS, FSH_BA, and
FSH_SRT_PA (start page address) and FSH_END_PA (end page address). The FLASH-DMA
subsystem generates the necessary FLASH commands, and performs the transfer to/from the
selected die from/to the selected region of SDRAM or SRAM. The destination memory address
is set by programming the FPGA based FLASH DMA Memory Page Registers.
FDMAMPage[28] determines whether the transfer is to/from SDRAM or SRAM while
FDMAMPage[11] allows the transfer to start in the middle of a 4Kbyte memory sector. Since
FLASH transfers can span 128Kbytes, the page address is generally not static (as for other DCB
DMA clients) but increments over 4Knominal boundaries as the DMA progresses. If the
maximum address is reached (for either SRAM or SDRAM), the page address will wrap.

2.7.2 FLASH Control

The FSW performs high-level flash management; the hardware provides facilities to make the
repetitive tasks transparent. FLASH Memory, by its nature, must be managed. The smallest
quanta is the “page” (2048 bytes + 64 byte). A “block” (128Kbytes + 4K bytes) consists of 64
pages. The user can program on a per page basis (set up sequential operations), but the minimum
size for erasure is the block. Once a block is reallocated (and erased), it can be incrementally
written to, either via program-page or random-data operations.

NOTE: Each FLASH device offers a “one-time programmable” area of ten full pages (which
Micron says you can actually program four times). This region is separately mapped and
accessed via separate “OTP” commands.
23 November 2009 27 RBSP_EFW_DCB_001O

A “valid block” identification standard should be established and maintained. The industry stan-
dard identifies invalid blocks by writing a value other than 0xFF to the first spare byte (column
location 0x800) on the first or second page of each bad block. Typically, factory identified bad
blocks use 0x00, while user identified bad blocks use 0xF0. (Reference 11 states that the bad
block indication is written into location 2048 “of the first or second page of each bad block” and
“the system software should check the first spare address of the first and second page of each
block” for bad block indication.) It is recommended that the hardware flag errors, but the soft-
ware exclusively write the bad block indicator bytes. Since FLASH blocks might be erased erro-
neously, bad block indicator tables should be established and maintained (on the ground) for each
DCB. Similarly, a duplicate of the Erase Count Indicator table should be maintained by the
ground ops software.

The RBSP FLASH spare bit usage is:
0x800 - First Page & Second Page - Bad Block Indicator
 0xFF => Good Block; 0x00 => Factory Marked Bad Block; 0xF0 => User Marked Bad Block
0x801 - 0x803 - First Page - Erase Count Indicator
0x804+ - All Pages - Spares and ECC Information

The FLASH control is accomplished via a specialized DMA controller that transfers data in mul-
tiples of 2048 bytes (multiples of FLASH pages). The FLASH-DMA directive is:

ERASE, RESET, GET-DEVICE-ID and other simple FLASH commands can be implemented by
the CPU in FLASH Diagnostic Mode (see Section 2.7.5 on page 31).

PAGEXFER operates on pages within one block only. The user can program up to 64 sequential
pages, but one DMA transfer cannot straddle block boundaries. (For example, if the start page =
0x3C, only four pages can be queued.) If the user programs an illegal page combination (i.e.
END PAGE < START PAGE) the FLASH DMA is terminates following the transfer of the maxi-
mum page address within a block (0x3F).

The FSW should check the bad block indicator prior to ERASE and PAGEXFER, and manage
the Erase Counter (prior to erasing a block, the erase counter should be read, incremented and
updated).

Bad block management is an on-going and essential process to the successful operation of the
FLASH array. The FLASH Status Register should be checked following any ERASE or PAGE
Write operation. If a failure has been detected, the block should be marked as bad. (Micron guar-
antees 4016 out of 4096 valid blocks over the lifetime of the device, given all other requirements
are met. Of course, due to the radiation exposure, the RBSP FLASH arrays may degrade more
unpredictably.)

2.7.2.1 DMA Subsystem Error Flags

The FLASH subsystem includes the following failure detection facilities: FLASH Interface Error
Detect, FLASH Timeout Error Detect and FLASH Programming Failure Detect. Each failure

Directive Name Parameters Operates On Comments

PAGEXFER n -Start Page, End Page
Block Address, Chip Select

one block, up
to 64 pages

Transfers data to/from CPU Memory space
Up to 64 pages possible/transfer; cannot
straddle the block boundary
23 November 2009 28 RBSP_EFW_DCB_001O

detect flag is readable at the FDMAStat Register and can be cleared by writing to the FDMAPulse
Register (it is up to the CPU to explicitly clear these flags).

The FLASH Interface Error Detect is set if the CPU attempts to write to a FLASH DMA Register,
or start a DMA transfer during FLASH DMA Subsystem activity (when the “Transfer in Progress
bit is set”).

The Timeout Error is detected if the target flash device is not “Ready” within 4 ms following a
command issue. This can occur following a reset command (which is issued at the start of each
DMA operation), a page-read command, or a program-page termination command. If a Timeout
Error is detected, the hardware halts the DMA transfer and interrupts the CPU. The “FLASH
Timeout Error Detect” is set at each timeout instance. The “halt on error” function can be disabled
by setting the “FLASH DMA Timeout Override” in the DMA Operation Control Register. With
the timeout override bit set, the DMA subsystem continues following any status timeout. If status
errors persist and the override is set, the DMA transfer will require quite a bit of time (since each
status read hangs the system for 4 ms).

During a multipage DMA FLASH write, the hardware checks status following each page write. If
an error is detected, the hardware halts the DMA transfer and interrupts the CPU. The “FLASH
Programming Failure Error Detect Flag” is set for each page that returns bad status following a
write operation. The “halt on error” function can be disabled by setting the “FLASH DMA Pro-
gramming Failure Override” in the DMA Operation Control Register. With the failure override
bit set, the DMA subsystem continues regardless of any error detects. The status flag, however is
set following each page-program failure detect.

The FLASH Current Page the Latched Status Registers may help with diagnosing problems when
errors are detected during DMA transfers.

2.7.2.2 FLASH DMA Transfer Timing

Page transfer time is expected to be limited by the SDRAM array bandwidth, as well as the
FLASH page initiation times. FLASH-DMA is assigned the lowest priority into SRAM/SDRAM.
Data is buffered in longword units prior to transfer to/from the SDRAM array. When the
SDRAM is not busy, the transfer time for one page is:

one page DMA FLASH READ: 25μs + 690μs = 715μs (as measured on the ETU)

one page DMA FLASH WRITE: 220μs + 690μs = 910μs

The Page Read time was measured with SDRAM scrubbing on, but FLASH ECC disabled. When
FLASH ECC is enabled, page read/write times will increase by about 10 - 15μs (depending on if
a correction is required).

Flash Transfers to/from SDRAM require about 1 ms when the array is being accessed continu-
ously by other high-bandwidth clients (including Scrubber, DFB and S/C Telemetry).

The basic SRAM transfer time is 670μs with CPU execution from PROM and 650μs with CPU
execution from SRAM. (Add 25μs for actual Page Read time, and 220μs for actual Page Write
time.)
23 November 2009 29 RBSP_EFW_DCB_001O

There is an option to slow down FLASH DMA (to free up the memory busses for other clients).
If the FLASH DMA Throttle is set, a 700ns delay is added to the normal delay between FLASH-
DMA requests. Since FLASH is the lowest priority client, the throttle is probably not necessary
for FLASH <=> SDRAM transfers. It may, however, be useful for FLASH <=> SRAM transfers
in order to lessen the MBUS load and free up the bus for CPU accesses.

2.7.3 FLASH ECC

An Error Detection/Correction subsystem, providing single-bit error detection/correction and
multi-bit error detection, operates (when enabled) on FLASH Pages. A portion of the upper 64
byte control region is allocated for the ECC checkbits. The page data area is divided into four 512
byte regions (ECC-SEG), each with its own Hamming ECC code. This requires three bytes of
ECC code for each ECC-SEG. Since byte 2048 is used for bad block identification, and the next
set of contiguous bytes are allocated for other FLASH metrics, the ECC controller begins the
ECC code storage further into the array as follows:

0x830 - ECC Tag (Valid Tag = 0x42, if ECC has been performed during previous write operation)
0x831 - 0x833 - ECC Checkbits for First Quadrant
0x834 - 0x836 - ECC Checkbits for Second Quadrant
0x837 - 0x839 - ECC Checkbits for Third Quadrant
0x83A - 0x83C - ECC Checkbits for Fourth Quadrant
0x83A - 0x83C - ECC Checkbit Parity

ECC does not cover the extra bits, but the subsystem generates and checks parity on the ECC
Checkbits. If the checkbit parity is bad, no correction is implemented and a non-correctable error
is registered.

(When in FLASH Diagnostic mode, the FSW should either invalidate the tag, or update the ECC
Checkbits when modifying data in the FLASH array.)

Following each page write, the ECC tag and checkbits are stored into the FLASH control region.
Following any page transfer the checkbits are written and the tag set (even when ECC is not
enabled).

Following each page read, if ECC is enabled, the ECC tag and checkbits are read out and ECC-
SEG verification performed. If any errors are detected, the FLASH ECC subsystem determines
whether the errors are correctable and rewrites the corrected values to DMA Memory. NOTE:
The hardware does not correct the FLASH data (so as not to expend additional write cycles). The
FSW may decide to correct FLASH (which can be done by initiating DMA in the reverse direc-
tion, writing back the corrected segment of memory to the corrupted FLASH segment).

ECC-Errors are logged for either type of error (single bit correctable or noncorrectable) and the
appropriate counter clocked (counter limit of 256 freezes at maximum count). The CPU is
informed, via status readback, whether ECC correction/detection has occurred during the previ-
ous DMA transfer. These counters can be cleared by the FSW via the register interface.

2.7.4 FLASH Interrupt

When enabled, a FLASH Subsystem Interrupt is generated upon completion of a DMA Transfer.
If the DMA transfer terminates early, due to an error condition, the FLASH Interrupt is generated,
23 November 2009 30 RBSP_EFW_DCB_001O

and the relevant error flag is set. If FLASH interrupts are disabled, the interrupt flag is still avail-
able as status. The FLASH Interrupt must be explicitly reset by the CPU.

2.7.5 FLASH Diagnostic Mode

There is a provision to drive the FLASH memory directly from the CPU using a memory-mapped
interface. To use this mode, the FLASH array must be enabled, and the FLASHMODE control bit
set to zero, selecting CPU-Mode.

In FLASH diagnostic mode, the CPU can address the FLASH array at base address 0xC0000. For
the protoboard configuration: the two chip selects in a module are selected with address bit 0.
The four modules are selected with address bits[2:1]. CLE is selected with address bit 4; and
ALE is selected with address bit 5. For example: command data to chip2, cs0 would use address
0xC0012; address information to chip 1, CS1 would address 0xC0023.

For the ETU/Flight configuration: the eight chip selects in a module are selected with address bits
[2:0]. CLE is selected with address bit 4; and ALE is selected with address bit 5. For example:
command data to CS5 would use address 0xC0015; address information to CS2 would address
0xC0022; data to CS1 would use 0xC0001. (As in DMA mode, the module is selected via
FLASHPWR[2:0].)

In order to avoid ECC errors when the system is switched back into DMA mode, the FSW should
either invalidate the ECC Tag or update the ECC checkbits as needed when modifications are
made to the data portion of the array.
23 November 2009 31 RBSP_EFW_DCB_001O

2.8 Timekeeping

The system clock is divided by two to generate the 8.39MHz (CLK8M) timebase clock.

CLK8M, the common timebase used by the DCB and DFB, is used for timekeeping and general
communications. CLK8M is used by the FPGA for:

• The CDI clock, timing instrument command generation, message intake. It pro-
vides the DFB system clock.

• The Timebase Counter clock (used for internal DCB measurements and time-
stamping).

The DCB clock is free-running and unrelated to the spacecraft clock. Spacecraft time is commu-
nicated to the DCB via the 1PPS signal and the time-command, transmitted once/second.

2.8.1 Timebase Counter

A 24-bit timebase counter (Sample Time), resident in the FPGA, is cleared by a hard reset and
clocked by SYSCLK. The DCB generates an internal CLK1HZ, based on the Sample Time
Counter rollover.

The Internal Counter (Sample Time) is available (CtrLo and CtrHi Registers) as status (first write
to CtrLo to latch the counter data).

The internal (Sample Time) counter is used to generate a latched Timing Tick interrupt (at
256Hz). The latched TIMINT must be explicitly cleared by the CPU upon detection.

The CLK1HZ occurrence is broadcast to the DFB and latched as status. CLK1HZ Detect stays
asserted until cleared by the CPU.

NOTE: Since CLK1HZ and CLK8M (DFBCLK) are both generated by SCLK, the DFB must
sample CLK1HZ at the falling edge CLK8M (as shown in Reference 6).

The timebase counter is used to generate the “subsecond timing ticks” (at 64 Hz) used by the DFB
DMA subsystem.

2.8.2 S/C Timing Signals (1PPS and Spin Pulse)

The DCB receives the 1PPS and the Spin Pulse multiplexed onto one control line. A deglitching
circuit removes pulses of less than four clock periods (about 240 ns) before starting to time the
incoming pulse. The S/C ICD (see Reference 1) states that the 1PPS pulse is nominally 80 μs and
the Spin Pulse 40 μs. A valid (passing the deglitching stage) pulse is timed and sorted as follows:

width between 30.5 us to 53 us => SPINPULDET set

width between 69 us to 91 us => 1PPSDET set

any other width => SCPULERRDET set

Both the 1PPSDET and SPINPULSEDET cause the timebase count to be latched as well as the
status flags set. On the trailing edge of the detected pulse (transition from low-high at the connec-
tor), the upper 16 bits of Sample Time are loaded into the “Delta MET Latch” (for the 1PPSDET)
or the “Spin Pulse Time Latch” (for the SPINPULSEDET).
23 November 2009 32 RBSP_EFW_DCB_001O

After being read, the 1PPS, SPINPULDET and SCPULERRDET flags should be explicitly
cleared by the CPU.

2.9 Housekeeping Subsystem

There is an analog-to-digital converter on the DCB board, along with one analog multiplexor
(eight inputs). The mux channel is selected via the ADC Control (ADCCtl) Register. Typically
the CPU sets the mux channel to the next channel to be sampled, waits until the switch and low-
pass filter have settled, and then starts a conversion. A conversion is performed by writing (any
data) to the ADC Conversion Start Register. The LTC1604 maximum conversion time is 2.8μs.

In order to optimize for low-power, the ADC should be kept in shutdown (nap mode, the default
at reset) until the CPU is ready to perform a conversion. The ADC requires 200ns to “wake-up”
following the deassertion of Shutdown (ADCCtl Register). Following conversion, the ADC
should be shutdown (returned to “Nap” Mode) and the next mux channel pre-selected.

The CPU should allow 500μs for the voltage to settle at the output of the analog mux following a
mux channel switch prior to performing a conversion.

See Reference 5 for the analog mux channel assignment.

2.10 PCB Interface

The PCB requires three digital control signals: PCB_CMD, PCB_CLK and PCB_STB. The
FPGA logic generates the necessary control signals/logic and the signals are passed to the back-
plane via logic translators/buffers.

The flight software sees the interface as an 8 bit data register(PCBCmdDat). Following a write
to the data register, the CPU starts the transmission by writing to the PCBCmd register. A status
bit (PCBCmdStat) informs the CPU of the interface status (busy/ready). If the CPU attempts to
write the PCBCmdDat Register or issues a PCBCmdStart while the interface is busy, an error is
flag set.

PCB_CLK, which runs only during command transmission, is 1.048MHz. Since the DCB uses a
non-inverting buffer for the clock, while the PCB uses inverting buffers, data changes on the ris-
ing edge and is stable on the falling edge (as seen on the backplane), allowing the PCB 54ACS164
shift register to forward data on the inverted clock’s rising edge.

Data (PCB_CMD) is transmitted MSB first, true logic. PCB_STB (active high, lasting one
PCB_CLK period) is issued following the transmission of the last data bit. Reference 7 details the
command decoding; Reference 6 summarizes command timing requirements.

The FPGA also provides the PCB Power Converter clock: 799KHz, 52.4%(HI)/47.6%(LO) duty
cycle.

2.11 BEB Interface

The BEB interface requires analog mux control, AC test stimulus signals and a facility to load the
BEB resident DACs. (Analog Mux and DAC Register mapping are detailed in Reference 8 and
Reference 9.) BEB signals, buffered via level translators on the DCB, are forwarded to the back-
plane without inversion. The BEB board uses inverting buffers and therefore may receive the sig-
23 November 2009 33 RBSP_EFW_DCB_001O

nals in an inverted state. In order to insure that the DCB-FPGA delivers signals to the BEB in
their active true state, the BEB inversion for each set of signals is detailed below:

2.11.1 BEB Analog Mux Controls

BEB_AMUXENB[2:0] - no inversion (active high logic)

BEB_AMUXADR[2:0] - inverted

The DCB-FPGA therefore inverts the AMUXADR prior to its transmission.

Since no more than one enable should be active, the analog mux enable is implemented via a 2-3
decoder:

A guardband is inserted by the logic when the enable configuration is changed.

2.11.2 BEB AC Test Stimulus

BEB_ACTEST[2:1] - inverted

The inversion on the ACTEST signals is only relevant when the ACTEST is inactive. In this case
the ACTEST signals are held to a logic high on the backplane (logic low at the output of the BEB
inverting buffer).

Two independently gated signals are either inactive or a square wave ranging from 128Hz to
512KHz. (One global frequency select is used to drive both AC Test signals.) Independent on/off
controls gate the individual AC test signals. Their activation/deactivation is synched to the next
instance of 1Hz clock (sample time).

The frequency is programmed via a 12-bit field in the BEB AC Test Ctl Registers. The AC Test
frequency is expressed by the following formula:

 f [Hz] = 524288/N

The value (N - 1) should be written to the AC Test Frequency field. Each count of the AC Test
Frequency increases the test period by ~1.9μs (2-19s): 0x000 selects 524 Hz, 1 selects 262 KHz,
0x800 selects 256Hz, 0xFFF selects 128Hz.

2.11.3 BEB DAC Controls

BEB_DACLDAC, BEB_DACCMD, BEB_DACCLK - all inverted

The DCB is responsible for loading and commanding the BEB DACs in compliance with the
AD5544 serial protocol (see Reference 10). There are five AD5544 quad-DACs resident on the
BEB configured in a “daisy chain”, each with four 16-bit registers. BEB_DACCLK, 1.048MHz,

BEB_AMUXSEL BEB_AMUXENB[2:0]
00 000
01 001
10 010
11 100
23 November 2009 34 RBSP_EFW_DCB_001O

is active only during DAC loading. (Registers are shifted out in numerical order: 0 first, 4 last. See
Reference 9 for a mapping of registers to the BEB-DAC Definitions.)

The CPU should write to five 16-bit FPGA based registers, one 2-bit DAC address field and issue
a command “DACXMIT” that starts the data shift process (90-bits) using DAC-CLK and DAC-
CS.

The shift process takes approximately 90 μs. An “Interface Busy” status flag is provided to the
CPU via the register interface. If the CPU issues a BEB-DAC command or attempts to modify
any of the BEB-DAC registers while the interface is busy, an error flag is set.

The CPU should perform the DACXMIT operation 4x to load all 20 DAC registers. Following
the DAC register writes, the CPU should issue a command “DACLOAD” to generate the final
strobe that transfers the data from the DAC holding to output registers. (NOTE: issuing
DACXMIT and DACLOAD simultaneously causes the shift, but not the load.)

2.12 DFB Interface

The DFB communicates via the serial format defined in the RBSP EFW IDPU Backplane Speci-
fication (see Reference 6) for the physical layer and timing characteristics.

2.12.1 DFB Command Interface

Command transmission complies with the protocol defined in (see Reference 6): 1 start bit fol-
lowed by the 24 bit command, followed by 1 parity bit (odd parity) followed by at least one stop
bit.

The CPU can initiate commands by a series of register writes: CDIDATLO, CDIDATHI, CDIID
and CDISTART to FPGA based registers. The CDISTART register write initiates transmission of
the command defined by the DATA and ID registers.

The CMDBUSY status indicator is asserted when a command is shifting out. The CPU should
not write to any of the Command Interface Registers when CMDBUSY asserted. CDISTART
register writes are ignored when CMDBUSY is set.

If the CPU writes to any of the CDI registers when a command is shifting, the CMDAVERRDET
error flag is set and remains set until explicitly cleared by the CPU (Pulse Register). Both CMD-
BUSY and CMDAVERRDET are available as status (AuxStat Register).

In addition to CLK8M (DFBCLK), the DCB provides DFB1HZ (the 1Hz Synch Pulse) to the
DFB as per Reference 6.

2.12.2 DFB Telemetry Interface

DFB Telemetry consists of a series of message words, with instrument specific content. The DFB
drives two identical and independent TLM-lines, delineating channels via “Data-IDs”. The
lower-level message interface is described in Reference 6. Incoming DFB data is arbitrated
between the two telemetry interface based on arrival order prior to being queued for DMA.
Therefore, the DFB should never transmit the same Data-ID on the two TLM-lines simulta-
23 November 2009 35 RBSP_EFW_DCB_001O

neously as this will cause an data sequence ambiguity. The same Data-ID, however, can appear
on separate TLM-lines as long the transmissions are time-offset.

2.12.2.1 DFB Data

DFB data arrives in units of 24-bits. The first 8-bits are “Data-ID” and the remaining 16-bits are
data. The Data-ID, which determines DMA channel, points the DFB-DMA Controller to the
appropriate address register.

Each DFB serial telemetry interface is serviced by a dedicated reception subsystem. Once two
words with the same APID have been received and are ready to be written into memory, the mes-
sage subsystem requests access to the appropriate memory controller. All data is transferred via
DMA (see below).

DFB Data reception logic flags parity and framing errors, but DMAs the data even when an
incoming word registers an interface error. The controller takes no action (i.e. no attempt is made
to reframe) in the event of an interface error. Parity and framing error detects are latched, and
remain set until explicitly cleared by the FSW. (If the interface has truly lost framing, it is
unlikely that data will be written into memory because the received DataID has probably been
corrupted. The interface will regain framing when two consecutive data words are separated by at
least 27 bits.)

2.12.3 DFB DMA

DFB DMA operates with 4096 byte page boundaries, intakes data from a serial interface and
writes the data into a preprogrammed location in DCB memory (SDRAM or SRAM).

A total of 16 channels are allocated for the DFB; each can be configured to write either into
SRAM or SDRAM. All channels are double-buffered; however, the selection between SRAM and
SDRAM (PageAddr28) is not double-buffered.

Each channel is allocated a BufSwapEnb control bit as well as a buffer termination control field,
separately configurable per channel as follows:

When enabled, the buffer swap occurs at the next occurrence of the selected Buffer Termination
Pulse.

DFB DMA is double-buffered and terminated by a timing signal rather than a length or end-
address. If the buffer fills before the selected timing pulse arrives, the data wraps, storing data in
a circular manner until the DMA is terminated. The termination timing strobe is selectable for
each DFB DMA channel. Each channel is allocated an Buffer Swap Enable bit, controlled by the
FSW. When the enable bit is set, the buffer swap occurs at the next termination timing tick.

Timing Option Buffer Termination

0 128 Hz

1 1 Hz
23 November 2009 36 RBSP_EFW_DCB_001O

DFB DMA uses a Page Register (Address[27:12]) which selects a 4K segment. All channels can
be located in SDRAM or SRAM, but this option is not double-buffered. Buffer location (in
SDRAM or SRAM) and termination options are fixed, and should be chosen prior to startup.

The “Next Page Register” is initialized prior to startup and should be updated by the CPU while
each current buffer is active. When the current buffer terminates, the “Next Page Register” is
loaded into the “Current Page Register” and the index is set to a constant value representing the
Packet Header Length, pointing the subsystem to the beginning of the next DMA segment.

DFB registers are accessed via a 4-bit pointer. A write to the DFB Control Register latches in the
pointer value. Following the pointer write, the channel’s next address can be written and DMA
current address can be read.

The Packet Header Length is a constant, set at 16 bytes.The CPU should write the header; each
instrument DMA transfer will be written into memory immediately following the header.

If the buffer terminates when a 16-bit word is pending (since DMA is written in longword units),
the DMA subsystem pads the last byte with 16-zeros, and completes the final transfer prior to
swapping buffers. NOTE: Due to the possibility of a “stack-up” of 16 pending memory transfers,
the channel buffer swap may lag (by up to 20 μs) the buffer termination strobe. The “Buffer Swap
Status” (see below) reflects the delay; therefore, the CPU should poll these flags to assure proper
synchronization. (NOTE: A potential race condition exists if the CPU clears the buffer swap reg-
ister within this 20 μs window.)

Should the DMA address overflow (buffer fills prior to swap), the DMA subsystem alerts the
CPU via an overflow error flag (one per DMA channel), and inhibits further writes until the next
buffer swap occurs. The CPU should check/clear the overflow error flag when setting up the next
buffer swap.

DMA status information can be read in two ways:

1. 16-bit flag Overview Registers that reflect the status of all DMA channels:

DMA Buffer Swap Status, DMA Buffer Overflow Error Flag and DMA Memory Timeout Error Flag

These three registers allow for a quick global look at all the DFB DMA channels. Swap status
shows which of the 16-buffers have swapped since the last Clear-Pulse (issued by the CPU). The
buffer overflow and memory timeout flags indicate error conditions. The overflow flag might
indicate a configuration error; the timeout flag should not occur during normal operation and
might indicate a hardware problem.

All of the Overview Registers are set by the hardware and remain set until explicitly cleared by
the CPU (via a DFB Control Register write).
2. Last Buffer Status Word Register:

The last buffer status word displays the following information relating to the last buffer swap:

Bit[15] Bit[14] Bit[13] Bit[12] Bit[11:2] Bit[1:0]
BufSwap Timeout Overflow Odd Index Always = 0
23 November 2009 37 RBSP_EFW_DCB_001O

Last Buffer Status is read on a per channel basis, by setting the pointer to the target DMA channel,
and reading back the two 8-bit Last Buffer Status registers.

The Last Buffer Status Word flags (Timeout, Overflow and Odd), unlike the Overview Registers,
do not stick; they truly reflect the last buffer status. (BufSwap, however, does remain set until
pulsed clear by the CPU.)

Index points to the next longword that the channel would have written when the buffer closed.
Odd indicates if the channel logic padded the last word (i.e. the buffer closure required the writing
of the last 16-bit word). This allows the processor to determine how many DFB words were writ-
ten to the previous buffer as follows:

#DFB Words in Buffer = ((Last Buffer Index - 4) X 2) - Odd

An exception applies if an overflow has occurred. In this case, the last buffer index points to the
last word written rather than the next word, and the number of DFB Words = 2040. (Words
beyond the 2040 capacity are discarded during an overflow condition.)

If the timeout flag is set, the data buffer is very likely corrupted (missing words).

2.13 Spacecraft Interface

CMD and 1PPS_SPINPULSE are received from the Spacecraft; TLM is sent to Spacecraft from
the DCB. Signals are buffered in accordance with Reference 1.

2.13.1 UARTs (CMD and TLM)

The UART is a standard 8-bit bidirectional UART operating at 115.2Kbaud (as described in Ref-
erence 1) using one start bit, 8 data bits followed by one parity bit. Parity is defined as “odd” in
the following manner: the eight data bits plus one parity bit are forced by the parity bit to incor-
porate an odd number of ones. The parity bit is followed by one stop bit.

S/C data is further organized into Instrument Transfer Frames (ITFs) for both commands and
telemetry. The DCB DMAs the S/C CMD data into a predetermined location in the CPU Mem-
ory, along with the ITF information. TLM data is transferred in “ITF Buffer Units”, with the
hardware inserting the ITF Header and Checksum.

Detection circuitry filters/discards pulses of less than 240ns. This “glitch” filter operates on the
entire command data stream prior to the start-bit/data-bit recovery stage. (It is also applied to the
1PPS/SpinPulse reception. See Section 2.8.2, “S/C Timing Signals (1PPS and Spin Pulse),” on
page 32 for details.)

The CMD Interface records/latches two types interface errors: Parity and Framing. A framing
error may be caused by either a runt start bit (most likely noise induced) or a missing stop bit. In
the case of a parity error or missing stop bit, the received byte is DMAed into memory and the
error condition(s) latched until the CPU explicitly clears them via writing to the UART CMD/
TLM DMA Control register.
23 November 2009 38 RBSP_EFW_DCB_001O

2.13.2 S/C Command DMA Interface

The Command DMA is contains a simple transfer protocol of writing/reading data from the
UART to/from the DCB-SRAM. The maximum command buffer size is 1024 bytes.

There is a 50ms guard band guaranteed between the end of all command transmission and the
next 1PPS assertion. The FSW must perform the buffer swap (set up the next CMD-DMA buffer)
within this period.

NOTE: RBSP data is delivered encapsulated in “Instrument Transfer Frames” ITFs. The S/C
Command DMA subsystem does not parse the Command Data ITF. ITF headers and checksums
are simply transferred to memory along with the packet data. Checksum verification (along with
verification of ITF length versus DMA data received, and checking the parity or framing error
flags) should be performed by the CPU prior to validation of each ITF.

There are two types of errors registered by the CMD-DMA modules: Timeout and Buffer Over-
flow. Both errors are readable as status, along with the CMD UART errors; all are reset by a com-
mon clear pulse controlled by the FSW.

The timeout error, which occurs only in the case of a hardware failure, asserts if the CMD byte is
not written into SRAM before the next byte begins shifting in. The assertion of the Timeout error
is an indication of a corrupt command buffer.

The Buffer Overflow error asserts if the number command bytes received exceeds the 1024 byte
allocation. It might reflect that the FSW has not rearmed CMD-DMA, or that the S/C has sent
more commands than expected (or a lower level hardware problem). Upon overflow, no further
commands are written into memory.

2.13.3 S/C Telemetry DMA Interface

The TLM interface is used to transfer CCSDS-formatted instrument data telemetry packets from
the IDPU Memory to the spacecraft for transmission to the ground. Packetization is in conform-
ance with CCSDS Packet Telemetry recommendations, and includes primary and secondary head-
ers followed by a stream of data. Data is transmitted to the TLM UART in wrappers, called
Instrument Transfer Frames (ITF). Each DMA unit (one or more packets) is encased in an ITF as
described in Reference 1, as follows:

Byte
Position Data Comments
0 0xFE (Sync Pattern) 32 bit sync pattern defined by Reference 1
1 0xFA (Sync Pattern)
2 0x30 (Sync Pattern)
3 0xC8 (Sync Pattern)
23 November 2009 39 RBSP_EFW_DCB_001O

The CPU is responsible for setting up the DMA transfers and generation of the CCSDS headers.
The FPGA transmits one or more variable sized CCSDS packets via the S/C TLM Interface,
inserting the ITF header and trailer information as needed. The CPU is responsible for determin-
ing if there is enough time to transmit the next queued DMA unit (next ITF) prior to the next S/C
1PPS clock. (A 4Kbyte packet transmission requires approximately 0.35 seconds.) The CPU
controls two of the ITF Flags (Aliveness Status and Power Down Request) via the Register Inter-
face.

The Packet Data segment is defined by the CPU via a Page Register and an Index register. The
Page Register, a constant value during each DMAed-Frame, spans bits 28:12 of the linear mem-
ory map. The Index register, cleared at the beginning of each DMAed buffer, counts longword
addresses as DMA progresses.

In accordance with Reference 1, the ITF fields are transmitted most significant byte first. Packet
data is transferred with no byte reordering (exactly as it is read out of memory: Byte 0, Byte 1,
etc.)

TLM Address and Length registers are single buffered. The CPU must wait until the current trans-
fer has completed before setting up the next transfer. The CPU must set the following registers for
each TLM DMA transfer:

TLM Buffer Length - 10 bits specify the buffer length in longwords. TlmBuffer Length is used to
compute the “Message Length” field of the ITF, compute transmission allowance (to meet the S/C
guardband requirements) and to terminate the DMA. The maximum buffer length is 1024 long-
words or 4096 bytes. The spacecraft ICD states that the message section of the ITF be <= 8192
bytes including the 2 byte checksum, inherently met by the buffer length restriction.

TLM-Page - 17 bits (sets Memory Page[28:12] for TLM-Buffer DMA). - indicates Start Page.
NOTE: Buffer start is always aligned to a 4K page boundary (Adr[11:0] are cleared upon initial-
ization of a TLM DMA buffer).

TLM buffers must always consist of an integral number of longwords.

4 Bit 7: Aliveness Status
Bit 6: Power Down Request
Bit 5: Spare (set to 0)
Bits[4:0]: MessageLength[12:8]

Aliveness Status and Power Down Request Flags are
set by the FSW via the Register Interface.
Message Length is derived from the programmed
DMA Length as follows:
Message Length = (NumLongwords x 4) + 4
(where NumLongwords = TLMLen + 1, representing
the number of longwords transmitted per ITF)

5 Bits[7:0]: MessageLength[7:0]

6 Bits[7:0]: FirstPacketHdrIdx[15:8] always zero for RBSP EFW
7 Bits[7:0]: FirstPacketHdrIdxs[7:0]
8 - N Packet Data Data DMAed from Memory
N + 1 Bits[7:0]: Checksum[15:8] XOR of all ITF data following byte 3
N + 2 Bits[7:0]: Checksum[7:0]

Byte
Position Data Comments
23 November 2009 40 RBSP_EFW_DCB_001O

When starting from a reset state, the CPU must first of all enable the interface (by asserting enable
TLM). After setting-up the initial TLM registers, the CPU asserts the “Start Transmission” bit
causing a buffer to be queued.

Once transmission has been started, it can be stopped by either:

• waiting until the current buffer transmission has shifted-out.

• disabling the interface - this is the most drastic way of shutting down TLM-DMA,
and will immediately stop transmission - possibly halting mid-buffer (resulting in a
partial ITF and packet).

The CPU can check the ongoing TLM-DMA Status by reading the Activity Status and
CurrentAddress (including page and index sections).

TLM-Buffers should only be queued by the FSW during the Telemetry subsystem IDLE state.

The following error types is reported by the TLM DMA Interface:

BCERR - The 1PPS signal arrived during the transmission of an ITF. This might indicate a prob-
lem with the timing interface (i.e. fast 1PPS) or an improper DMA setup.

BQERR - A Buffer Queue error occurs if the FSW arms another buffer when there is still a pend-
ing transmission. In these cases the last “start buffer” is ignored, except for setting the BQERR
status bit.

Both errors are fed back to the FSW via register bits and can be cleared via the TLM “Clear Error
Detects” in the TLM Control Register.
23 November 2009 41 RBSP_EFW_DCB_001O

	1.0 Introduction
	2.0 Subsystem Descriptions
	2.1 Clocks
	2.2 Reset
	2.3 CPU
	2.3.1 Debug Interface
	2.3.2 Interrupts
	2.4 CPU Memory
	2.4.1 CPU Memory Map
	2.4.2 CPU I/O Space
	2.5 Memory Bus Control/Arbitration
	2.6 Bulk Memory - SDRAM
	2.6.1 SDRAM Error Correction Circuitry (ECC)
	2.7 FLASH Memory
	2.7.1 FLASH Addressing
	2.7.2 FLASH Control
	2.7.3 FLASH ECC
	2.7.4 FLASH Interrupt
	2.7.5 FLASH Diagnostic Mode
	2.8 Timekeeping
	2.8.1 Timebase Counter
	2.8.2 S/C Timing Signals (1PPS and Spin Pulse)
	2.9 Housekeeping Subsystem
	2.10 PCB Interface
	2.11 BEB Interface
	2.11.1 BEB Analog Mux Controls
	2.11.2 BEB AC Test Stimulus
	2.11.3 BEB DAC Controls
	2.12 DFB Interface
	2.12.1 DFB Command Interface
	2.12.2 DFB Telemetry Interface
	2.12.3 DFB DMA
	2.13 Spacecraft Interface
	2.13.1 UARTs (CMD and TLM)
	2.13.2 S/C Command DMA Interface
	2.13.3 S/C Telemetry DMA Interface

		2010-03-25T09:56:04-0700
	Dorothy Gordon

		2010-03-23T16:06:41-0700
	Peter R Harvey

		2010-03-22T13:54:41-0700
	Michael Ludlam

		2010-03-22T13:53:31-0700
	Michael Ludlam

